A Modeling Framework for Estimating Demand Flexibility of VAV Systems in Commercial Buildings

Graduate PhD Student: Elvin Vindel Research Advisors: Burcu Akinci PhD and Mario Bergés PhD Civil and Environmental Engineering, CMU, Pittsburgh, PA

Motivation

Demand flexibility in buildings is expected to provide the operational flexibility for the sustainable integration of renewable energy in the power grid [1].

It is expected that this technology has national benefits that exceed \$15 billion/yr. by 2030 in avoided generation capacity, avoided T&D capacity, ancillary services, and energy costs [2].

Buildings are a significant portion of electricity demand (EIA 2016)

Space Cooling and Heating are a large portion of this use (EIA 2017)

Research Approach

Leverage existing data and information models available for modern buildings to develop a modeling framework for air distribution systems in VAV systems with the goal of enabling commercial buildings to participate in advanced grid services.

Research Vision

[1] M. Neukomm, V. Nubbe, and R. Fares, "Grid- Interactive Efficient Buildings," Apr. 2019.

[2] R. Hledik, A. Faruqui, T. Lee, and J. Higham, "The National Potential for Load Flexibility: Value and Market Potential through 2030," 2019.

Carnegie Mellon University Civil & Environmental Engineering